Preliminary Testing Tool for VGA Monitor Using FPGA XC4005XL and XS-Board

Indar Sugiarto
Department of Electrical Engineering - Petra Christian University
Jl. Siwalankerto 121-131, Surabaya 60236
Email: indi@petra.ac.id

Abstract
There are a lot of factors causing the monitor not to work well. Examination by the technician generally involves two steps: preliminary testing for facts finding and minor problems solving, and/or followed by further hardware-repairing. This paper describes the using of XS-Board and the Xilinx-FPGA within it to create preliminary testing tool for VGA troubleshooting. The goal of this research is to evaluate how effective the using of XS-Board with FPGA XC4005XL to implement a preliminary testing tool for VGA troubleshooting. The system will generate pictures in certain patterns and colors periodically to help technician in observing the monitor. The experiment shows that XS-Board with FPGA XC4005XL inside it is capable in handling the signaling for VGA monitor to display 64 colors almost fullscreen. With only consume 15% of logic cell resources; this system is efficient enough and ready to be improved further. One of its critical characteristics is that the internal clock generator of XC4005XL has 10% tolerant in frequency variation resulting in imperfect display of fullscreen mode.

Keyword: VGA monitor, FPGA

Introduction
All computers need a video system to display the text, graphics, and multimedia images associated with everyday computing. A video system generally consists of two elements – the video controller and the monitor. Most desktop video systems use a cathode ray tube (CRT) as their monitor. The VGA (Video Graphics Array) and its descendant (SVGA or Super VGA) is the most accepted technology for the PC’s (Personal Computer) monitor nowadays.

There are a lot of factors causing the monitor not to work well. Some of them are easily identified by their symptoms, especially when we use Windows® Operating System, and the rest are left for the technician to deal with. Examination by the technician generally involves two steps: preliminary testing for facts finding and minor problems solving, and/or followed by further hardware-repairing.

This paper describes the using of XS-Board and the Xilinx-FPGA within it to create preliminary testing tool for VGA troubleshooting. The order of this manuscript is arranged firstly by introducing VGA technology and XS-Board system, and then followed by HDL design, implementation, analyzing and closed by conclusions.

VGA Monitor
The VGA was firstly introduced in 1987 and originally intended for PS/2 series. But now, VGA is considered to be standard equipment for all new
It is VGA that provides the familiar 640 x 480 x 16 screen mode which has become the baseline for Microsoft Windows 9x/Me/XP “Safe Mode” display. The use of analog color signals allows VGA systems to produce a palette of 16 colors from 262,144 possible colors. The video adapter in PCs sends the signals from its image memory at fixed rate (usually configurable) through the DAC (digital to analog converter) circuit to the monitor connector on the graphics card. The DAC converts numeric pixel color values to voltage levels for red, green, and blue which are sent to monitor through the monitor cable.

Figure 1 is the representation of connector usually found in the VGA monitor. There are three signals - red, green, and blue - that send color information to the monitor. These three signals each drive an electron gun that emits electrons which paint one primary color at a point on the monitor screen. Analog levels between 0 (completely dark) and 0.7 V (maximum brightness) on these control lines tell the monitor what intensities of these three primary colors to combine to make the color of a dot (or pixel) on the monitor’s screen.

Each analog color input can be set to one of four levels by two digital outputs using a simple two-bit digital-to-analog converter (see Figure 2). The four possible levels on each analog input are combined by the monitor to create a pixel with one of 4 x 4 x 4 = 64 different colors. So the six digital control lines let us select from a palette of 64 colors.

A horizontal line consists of several pixels and a frame composed of multiple lines which can present an image on the monitor screen. A frame of VGA video typically has 480 lines and each line usually contains 640 pixels. In order to paint a frame, there are deflection circuits in the monitor that move the electrons emitted from the guns both left-to-right and top-to-bottom across the screen. These deflection circuits require two synchronization signals in order to start and stop the deflection circuits at the right times so that a line of pixels is painted across the monitor and the lines stack up from the top to the bottom to form an image. The timing for the VGA synchronization signals is shown in Figure 3 [2].
Negative pulses on the horizontal sync signal mark the start and end of a line and ensure that the monitor displays the pixels between the left and right edges of the visible screen area. The actual pixels are sent to the monitor within a 25.17 µs window. The horizontal sync signal drops low a minimum of 0.94 µs after the last pixel and stays low for 3.77 µs. A new line of pixels can begin a minimum of 1.89 µs after the horizontal sync pulse ends. So a single line occupies 25.17 µs of a 31.77 µs interval. The other 6.6 µs of each line is the horizontal blanking interval during which the screen is dark.

In an analogous fashion, negative pulses on a vertical sync signal mark the start and end of a frame made up of video lines and ensure that the monitor displays the lines between the top and bottom edges of the visible monitor screen. The lines are sent to the monitor within a 15.25 ms window. The vertical sync signal drops low a minimum of 0.45 ms after the last line and stays low for 64 µs. The first line of the next frame can begin a minimum of 1.02 ms after the vertical sync pulse ends. So a single frame occupies 15.25 ms of a 16.784 ms interval. The other 1.534 ms of the frame interval is the vertical blanking interval during which the screen is dark.

Xilinx FPGA and XS-Board

FPGA (Field Programmable Gate Array) is a type of Programmable Logic Device which has regular structure of logic cells or modules and interconnects. The internal structure of this device is arranged so that the FPGA has high flexibility in design and configuration. Our project is carried on FPGA XC4005XL from Xilinx. XC4005XL has 196 CLBs (Configurable Logic Block) which is adequate to implement logic system equivalent with 5000 logic gates. It also has internal clock with frequencies vary from 15 Hz to 8 MHz.

XS-Board is a prototyping board for PLD-based application made by Xess Corporation. Depending on what PLD is used; XS-Board may vary from the simple one to the most complex system. In this project, we use XS-Board for Xilinx FPGA which is called XS-40. Figure 4 shows interconnect diagram within XS-40 featuring XC4005XL FPGA.

The PC can transmit signals to the XS40 Board through the eight data output bits of the parallel port. The FPGA has direct access to these signals. Special bits are used to download configuration bits and to set mode of the FPGA. These pins are pins 1, 7, 8, 14, and 17 of the parallel port. JTAG method is used to download the FPGA bitstreams through these pins. Communication from the XS40 Board back to the PC also occurs through the parallel port. The PC can read the status pins to fetch data from the XS40 Board.
HDL Design

HDL (Hardware Description Language) is used by system designers whenever they want to implement any circuit or system onto single chip. This language differs from common computer programming language in such method that the algorithm is device oriented. It means that the procedure to implement the algorithm must confirm the technology used by the device. We use VHDL (Very High Speed Integrated Circuit Hardware Description Language) to implement the algorithm. The following step is used to implement HDL on XS-Board for our project.

```vhdl
/* P is equivalent to maximum number of columns */
/* set pixel data from 0 to 63 */
color = 0
for d=1 to 64
  /* mask off pixel in the lower two bits */
  send color to monitor
  color = color + 1
d = d + 1
/* blank the monitor for H pixels */
for horiz_blank_cnt=1 to H
  color = BLANK
  send color to monitor
/* pulse the horizontal sync at the right time */
if horiz_blank_cnt>HB0 and
  horiz_blank_cnt<HB1
  hsync = 0
else
  hsync = 1
horiz_blank_cnt = horiz_blank_cnt + 1
/* blank the monitor for V lines and insert vertical sync */
for vert_blank_cnt=1 to V
  color = BLANK
  send color to monitor
/* pulse the vertical sync at the right time */
if vert_blank_cnt>VB0 and
  vert_blank_cnt<VB1
  vsync = 0
else
  vsync = 1
vert_blank_cnt = vert_blank_cnt + 1
/* go back to the start process */
```

Figure 5. Design flow of preliminary testing for VGA monitor project.

The project of preliminary testing tool for VGA monitor is working as follows. The FPGA through XS-Board is responsible for transmitting control signals to VGA monitor so that the monitor will display several colors for entire viewable area of the screen. One of our goals is to examine how many colors are generated for full-screen display in VGA monitor using XC4005XL. The color of monitor is changed periodically to test monitor respond for specific color. By adjusting the color displaying rate, it may give us a “glowing” monitor. The technician may discover any monitor defects by this method.

The following lines are the algorithm for our project.

```vhdl
/* send L lines of video to the monitor */
for line_cnt = 1 to L
  /* L is equivalent to maximum number of rows */
  /* send P pixels for each line */
  for pixel_cnt = 1 to P
```

Experiment and Testing

The most critical issue in this project is signal period for driving the R, G, B, horizontal and vertical synchronization signals. According to the standard, all signals have their maximum values so that the CRT will work well. So, the deepest concern of our project lies on its frequency clock. Because we used the internal clock of the XC4005XL (OSC4), we examined firstly to the actual frequency generated by XC4005XL. Adverse ambient temperature and other external noise may degrade original frequency of this FPGA. Figure-6 below shows how we examined the actual frequency of XC4005XL and table-1 summarizes the actual frequencies emitted by internal clock generator (which are passed through pins 80 to 84 of XC4005XL).

Figure 6. Clock generator using component OSC4
So the pulse period of this clock is $1/7.8\,\text{MHz}$ is about $7.8\,\text{MHz}$, since it is not long after power on.

First, we assume that the applied frequency is 7.84 to $7.44\,\text{MHz}$. This clock sets the maximum rate at which pixels can be sent to the screen; it’s about $0.5\,\text{cm}$ width at right side viewable region of the screen. The following explanation can describe this phenomenon.

The frequency clock of about $8\,\text{MHz}$ within the FPGA is used and its actual frequency may vary from 7.84 to $7.44\,\text{MHz}$. This clock sets the maximum rate at which pixels can be sent to the monitor. First, we assume that the applied frequency is about $7.8\,\text{MHz}$, since it is not long after power on. So the pulse period of this clock is $1/7.8\,\text{MHz} \approx 0.13\,\mu\text{s}$. To occupy $31.77\,\mu\text{s}$ of line period (between two consecutive horizontal blanking interval), it needs $31.77/0.13 \approx 244$ cycles. Using 8 bits counter, we got 256 cycles. If the applied frequency is about $7.6\,\text{MHz}$, we got pulse period of $1/7.4\,\text{MHz} \approx 0.14\,\mu\text{s}$. So, it needs $31.77/0.14 = 227$ cycles for one line. Consequently, we waste $256 - 227 = 29$ cycles. Using SVGA monitor with $0.28\,\text{dot pitch}$, we gain approximately $29 \times 0.28 \approx 8.12\,\text{mm}$ blank area.

<table>
<thead>
<tr>
<th>Output of OSC4</th>
<th>After power on</th>
<th>1 hour after power on</th>
</tr>
</thead>
<tbody>
<tr>
<td>$8,\text{MHz}$</td>
<td>$7.84,\text{MHz}$</td>
<td>$7.44,\text{MHz}$</td>
</tr>
<tr>
<td>$500,\text{kHz}$</td>
<td>$486.4,\text{kHz}$</td>
<td>$472.3,\text{kHz}$</td>
</tr>
<tr>
<td>$16,\text{kHz}$</td>
<td>$15.3,\text{kHz}$</td>
<td>$14.9,\text{kHz}$</td>
</tr>
<tr>
<td>$490,\text{Hz}$</td>
<td>$481,\text{Hz}$</td>
<td>$468,\text{Hz}$</td>
</tr>
<tr>
<td>$15,\text{Hz}$</td>
<td>$14.7,\text{Hz}$</td>
<td>$13.9,\text{Hz}$</td>
</tr>
</tbody>
</table>

Significant degradation of clock frequency at the output pins of FPGA is due to the fact that the clock signal goes to the outside of FPGA through internal routing matrix and IOB. Originally, the internal clock frequency is intended for internal purpose only. Consequently, it affect the overall performance of the displayed screen like we show in the rest of this paper. The following picture (figure 7) shows the schematic of our project which is drawn in Xilinx Foundation 2.1i. The schematic representation of our project is looked simple because we carried out all programming in native language (VHDL).

![Figure 7. Schematic representation of the project](image)

After synthesize and implement the design within the compiler (Xilinx Foundation 2.1i), resulted bit-streams were downloaded onto the XS-Board using special software called XSTOOLS. The SVGA monitor was plugged onto the XS-Board and its response would be evaluated. The monitor displayed all 64 colors with interval 1 second for each color. It was also discovered small missing pixels on the bottom of the screen. But this approach of using smaller bit counter, result in less FPGA resource was used.

Other useful information about our project is derived from implementation report of Xilinx Foundation 2.1i. Table 2 below shows resource utilization by the project using FPGA XC4005XL.

<table>
<thead>
<tr>
<th>Resource parameters</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of External IOBs</td>
<td>11 out of 61 18%</td>
</tr>
<tr>
<td>Flops</td>
<td>0</td>
</tr>
<tr>
<td>Latches</td>
<td>0</td>
</tr>
<tr>
<td>Number of CLBs</td>
<td>31 out of 196 15%</td>
</tr>
<tr>
<td>Total Latches</td>
<td>0 out of 392 0%</td>
</tr>
<tr>
<td>Total CLB Flops</td>
<td>36 out of 392 9%</td>
</tr>
<tr>
<td>4 input LUTs</td>
<td>52 out of 392 13%</td>
</tr>
<tr>
<td>3 input LUTs</td>
<td>4 out of 196 2%</td>
</tr>
<tr>
<td>Number of OSCILLATORs</td>
<td>1 out of 1 100%</td>
</tr>
</tbody>
</table>

Most of the resources are used for counters. We use 4 counters in the design: 4 bit as frequency divider yielding 1 second clock pulse for color transition, 6 bit counter for color selection, 8 bit counter for horizontal blanking interval, and 9 bit counter for vertical blanking interval. It is obviously inferred from table 2 that the rest of resources are available for further improvement such as high resolution and true color system implementation.

Conclusion

From implementation and testing of the project, we conclude that:

- Internal clock generator of XC4005XL may vary within 10% from its standard frequency. The frequency degrades significantly if it’s used to drive external I/O devices.

- Using 8 MHz internal clock of XC4005XL on the XS-Board is sufficient to drive VGA monitor. The maximum number of colors is limited due to internal circuit of XS-board which limits the DAC for monitor only to 6 bit resulting 64 colors.
Blank area of the screen is caused by the mismatch of counter value with its correspondent blanking interval. Further improvement could be made by placing appropriate modulo-n counter as replacement for the binary counter.

This system still can be improved to accommodate the SVGA (Super Video Graphic Array) preliminary testing system. Of course, some modifications of the circuit must be made in order to acquire the requirement for driving SVGA monitor. High resolution DAC and the high stability external clock circuit must be considered by this way.

References